
N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

D AT E : M a r c h 2 9 , 1 9 8 4

T O : R & D P e r s o n n e l

F R O M : R a l p h B e c k e r

SUBJECT: NPX User's Guide

REFERENCE: PE-TI-793, PRIMENET Guide

KEYWORDS: NPX

ABSTRACT

This document is intended to be a complete, updated user's
guide to the NPX (Network Process Extension) facility. NPX is a
r e m o t e p r o c e d u r e c a l l m e c h a n i s m f o r e x e c u t i o n o f s h a r e d
dynamically linkable procedures on remote CPUs, hence allowing
access to remote resources. Included is a functional description,
internals overview, and calling sequence reference. This document
supersedes all previous NPX documents except where noted. The
documents archived are:

PE-TI-643 Remote Procedure Call (RPCL) (T. Taylor)
PE-TI-776/1 Subsystems Programming Guide to NPX (T. Taylor)
PE-TI-1031 The Implementation of SLAVID in NPX (H. Chen)
PE-TI-1032 Usage of Asynchronous RPCLs (H. Chen)

This document is classified PRIME RD&E RESTRICTED. It is
for distribution to PRIME RD&E Personnel only. When this
document is no longer needed, it should be returned to
the B ldg. 10 In format ion Center by spec ia l de l ivery
inter-office mail - or destroyed.

©Prime Computer, Inc., 1984
All Rights Reserved

PRIME RD&E RESTRICTED

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

Table of Contents

1 I n t r o d u c t i o n t o N P X 3
1 . 1 H i s t o r y 3

2 P e r f o r m a n c e o f N P X v s . F A M 1 5

3 U s i n g N P X 6
3 . 1 N P X R o u t i n e s 6
3 . 2 U s e r R e s t r i c t i o n s 7
3 . 3 R e m o t e I D s 8

4 T h e C a l l i n g I n t e r f a c e s 9
4 . 1 T h e O l d S y n c h r o n o u s N P X I n t e r f a c e 9
4 . 2 T h e N e w S y n c h r o n o u s N P X I n t e r f a c e 1 5
4 . 3 T h e A s y n c h r o n o u s N P X I n t e r f a c e 2 1

5 C o n v e r s i o n B e t w e e n O l d a n d N e w I n t e r f a c e s 2 5

P R I M E R D & E R E S T R I C T E D P a g e

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

1 Introduction to NPX

Please note: NPX is unreleased for general use. Any engineers
t h i n k i n g a b o u t u s i n g i t s h o u l d c o n t a c t t h e n e t w o r k g r o u p f o r
consultat ion before implementat ion.

The NPX facility allows a program to execute any direct call or
shared library routine on any CPU in the visible (configured) network.
For instance, a program running on ENB could call NEXT$ to read the
next record of a MIDAS file on END. Each Remote Procedure Call (PCL)
made by NPX is actually executed on the remote machine by a special
dedicated server process similar to a phantom known as a slave. The
process that calls a slave is known as the master.

A slave can serve only one master; that is, once a slave is
associated with a master, the relationship between them remains until
one side (usually the master) explicitly breaks the relationship and
returns the slave to the available pool. A master process may have
many slaves, but only one per remote node. If a process attempts to
acquire more than one slave on a particular node, NPX will detect this
and simply use the slave that already exists on that node. The
m a s t e r - s l a v e r e l a t i o n s h i p , i n c l u d i n g a l l s t a t u s i n f o r m a t i o n , i s
r e t a i n e d u n t i l e x p l i c i t l y b r o k e n b y t h e m a s t e r , l o g o u t , o r
unrecoverable node or communications failure.

All arguments and the ASCII target subroutine name are copied to
the slave process via the network inter process communication facility
(IPCF) primitives. The slave then constructs a DYNT (an unsnapped
dynamic link) to the target routine and calls it with the user supplied
arguments. Return arguments from the target call are sent back to the
user just as the input arguments were copied to the slave.

1 .1 History

NPX was developed and written in FORTRAN approximately five years
a g o . O r i g i n a l l y, i t w a s p l a n n e d a s t h e t o o l t o s u c c e e d t h e
server-based FAM (File Access Manager) to improve performance and
functionality, as well as provide a general purpose Remote Procedure
Call mechanism. At PRIMOS (operating system) revision 18, the file
system was rewritten to use the newly created FAM II routines.

For the sake of clarity, future references to 'FAM I' will concern
the old File Access Manager, obsolete at rev. 19.3, which performed
all local and remote file access with a server. The name 'FAM II'
refers to the current file system routines that replace FAM I and which
use NPX rather than a server to effect remote access. 'NPX' refers to
the set of routines that allow access to remote procedures; these are
described in this document. NPX, the Network Process Extension, is so
named as it is an extension to PRIMENET Level III and uses PRIMENET
rout ines and func t iona l i ty.

P R I M E R D & E R E S T R I C T E D P a g e

NPX User's Guide PE-TI-1166

This is how NPX fits into PRIMENET:

System

I U s e r i
I Applic. J' (x.mail) ! NPX FTS

Route
-Thru

Net l ink Remote
Login

Level III IPCF Primitives
Level III

Level II
Synchronous

LoopBack! L e v e l I I i
! R i n g !

i Physical Layer (PNC, Synchronous, Asynchronous, etc.)

Since its inception, NPX has undergone many changes. Most changes
have been transparent to most users, while some have been quite
radical. Further, many subsystems within Prime have converted to using
NPX rather than IPCF routines, as NPX is considered less cumbersome to
use and reasonably flexible.

When using NPX, it is important to know
which an application is run. There are
incompatible calling interfaces to NPX; oneand including PRIMOS rev. 19.2, and a
revisions (19.3 and greater). Both of these
in detail in later chapters of this document.

the PRIMOS revision on
cur rent ly two d is t inc t ,

systems up to
all subsequent
are described

for all NPX
second for
in ter faces

date enhancements to the
tire network is now allowed
of the CPU. It is easy to
old NPX allocates a slave,

t o t h e u s e r. A n e w
w node numbers; thus, when
all a remote procedure, his
e another node! Thus, the
not know anything is wrong

work is down.

The fix for this problem is the implementation of a system-wide
unique slave identifier that is seen in the new NPX interface calls.
This makes the NPX calls independent of the system's network
configuration. Please see the subsequent chapter on those calls for
further detai ls.

The in te r face was changed to accommo
network configura t o r f u n c t i o n a l i t y. The en
to be brought up and shut down independently
envision a scenario where a user running the
then the network is taken down, unknown
configuration cou Id be brought up with ne
the user with the allocated slave tries to c
'known' node numb er may not exist or could b
unfortunate user i n t h i s s i t ua t i on w i l l
unless h e tries t o make a call while the net

PRIME RD&E RESTRICTED Page

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

The largest and most obvious application of NPX is the file system.
The file system itself runs in one of two ways; locally or remote.
When a file system operation is requested, the object of the operation,
whether it be a file, directory, attach point, or something else, is
searched for on the local machine. If it is not there, then it is
searched for on the list of remote disks by using NPX.

For example, if the command 'attach blah>frump' is issued, the UFD
blah is searched for on the disks of the local system. If it isn't
found, then the disks of the remote systems are sequentially searched.
This is done by making the same SRCH$$ calls that are made on the local
system, only NPX is used to call them on each remote system in turn.

Note that to access a file on a remote system through NPX the disk
on which it resides does not necessarily need to be added. However,
both nodes must be able to recognize each other on the network for the
NPX calls to be successful. Both nodes need only to have each other
configured in their respective networks.

2 Performance of NPX vs. FAM I

NPX performance was measured some time ago based on comparison
tests to FAM I. In summary, FAM II (NPX) is approximately twice as
fast as FAM I in most tests. The tests included real time for File
System operations, CPU time in PRWF$$, working set, and overall CPU
time. It should be noted that this improvement in speed was made at
the expense of the making and breaking of Virtual Circuits. Please
refer to PE-TI-793, FAM II Performance (T. Taylor) for complete
d e t a i l s .

P R I M E R D & E R E S T R I C T E D P a g e

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

3 Using NPX

Using NPX is fairly simple for the average user. For most
applications, it is a matter of allocating (setting up) a slave process
on the remote node, call ing the desired remote routine(s) in
succession, and releasing the slave.

In order to use NPX, several insert files must be included with
programs to obtain values for declarations of constants. Use the
fol lowing fi les:

SYSCOM>KEYS.INS.language /* System Keys */
SYSCOM>ERRD.INS.language /* Error Codes */
INTCOM*>NPXKEY.INS.language /* NPX Codes */

where language is currently only Fortran (FTN) or PLP. Also note that
NPX routines are not in a library. In order to be used, they must be
declared with the DYNT subcommand in BIND, or loaded with the binary
image of a special miniature PMA program that DYNTs the NPX routines
used. All user-accessible NPX routines are PRIMOS gates and can only
be accessed in this way.

3.1 NPX Routines

Specifically, there are routines that accomplish the required tasks
within NPX. Before any real work is done, a remote node name must be
obtained. The node name is then checked; in the old calling
interface, R$CVT is used to check the node name and convert it into a
node number. In the new calling interface, the optional routine R$CKNT
ensures that a given node name is valid. Then, the module R$ALOC
performs slave allocation; in the old scheme using the node number, in
the new scheme the node name itself is used and a slave identification
is returned and is later passed to the other routines. Then, R$CALL
(synchronous) or paired calls of R$BGIN and R$END (asynchronous) do the
actual calling of the remote routine(s). Finally, R$RLS is used to
release the slave.

Both the old and new calling sequences for these routines are
outlined in detail in the subsequent chapters. There is also a special
chapter that describes a suggested conversion procedure between the old
and the new interfaces.

Finally, please note that there is a limit on one slave per user
per remote node; that is, a user may have slaves on up to 16 remote
nodes, but only one slave may be on each system for that user process.

P R I M E R D & E R E S T R I C T E D P a g e

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

3.2 User Restrictions

There are several things that NPX cannot or will not do for a user.
Many go far beyond the original scope of intended NPX functionality,
while others are overly burdensome to implement. Here are some of the
things that NPX does not do:

1. The user and/or the subsystem in question may not use common
blocks to communicate across the network. The subsystem may use
common blocks to communicate between its own internal subroutines,
but common blocks can not be used to communicate between distributed
subsystems.

2. The NPX mechanism is intended to support up to 15 arguments
in each remote call. Arguments are copied from the calling (master)
process to the slave process where the target call is made. Return
arguments are copied back to the caller in an analogous fashion.
The maximum length of all arguments concatenated together is 8k
bytes due to ringO stack size. This is because the slaves copy
their arguments into and out of the Ring 0 Stack before and after
the procedure call to the target routine.

3. Each argument is either an input argument, an output
argument, or both. Pointer or LOCO arguments are also supported,
using some special rules that inform the NPX mechanism of the memory
size of the referenced argument. INTEGER*2, INTEGER*4, char(*)
aligned, char(*) varying aligned, pointer, and both scalar and
aggregate data can be passed through the NPX mechanism. Each
argument to a local subroutine maps to a triplet of arguments for
NPX. The triplet includes the argument itself, its length, and keys
describing its data type.

4. The return lengths of aggregate arguments can be specified
by other arguments set as a result of the target call. For example,the specified length of the buffer passed as an argument to GPATH$
will affect the total length of the arguments list sent to a slave.

5. NPX does not support 'route-through' by calling R$CALL with
a remote procedure name argument of R$CALL. The slave structure
does not lend itself to an efficient route-through mechanism, and is
not allowed.

P R I M E R D & E R E S T R I C T E D P a g e

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

3.3 Remote IDs

ACLs are used to restrict the scope of the slaves access on target
systems. Typical ly, the slave inherits i ts master's user name,
project(s) and node name. This gives control of remote resources to
the administrator of the target system (the system that owns the
resources) not the master's system administrator (the system that wants
to consume or use them).

This brings to light the issue of naming spheres. A machine or
group of machines is in the same naming sphere so specified in the
network configuration. If two nodes are in different naming spheres,
then when an attempt is made to use a slave on the remote node, a
'Slave ID Mismatch' or similar error occurs.

This is a security feature that prevents unauthorized access to
system administrator specified nodes or groups of nodes. However, if
access to the remote node is desired, an authorized person, with a
login name and password on that node, can issue a command to permit
access. This command is the Add_Remote_ID (ARID) command and is of the
form:

ARID remote_id [password] -ON node [-PROJECT proj_id] [-PROMPT]

Note that the -PROMPT option was added at PRIMOS rev. 19-3.

When an ARID command is issued, all remote access made by the user
issuing this command on the specified node uses the given remote id and
its corresponding access rights. The ARID command may be issued when
not explicitly required if a user needs greater access privileges on a
remote node than is provided by default and knows a login name and
password there. Please note that NPX (and all subsystems that use it)
are the only objects that are affected by the Remote ID principle.

Associated with the ARID command is the List_Remote_ID (LRID)
command, which lists the remote IDs that have been specified for all
remote nodes. Finally, the Remove_Remote_ID (RRID) command removes a
given remote ID and again allows the default remote ID, that being the
user name, to be used for subsequent remote accesses. The
Remove_Remote_ID command was added to PRIMOS at rev. 19.3. Note that
logging out also removes all remote IDs, as well as logging out any
slaves that may have been created. Further details on these commands
can be found in the PRIMENET Guide.

P R I M E R D & E R E S T R I C T E D P a g e

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

4 The Calling Interfaces

4.1 The Old Synchronous NPX Interface

In all old-style NPX calls, an error return value is provided for
i d e n t i fi c a t i o n o f p o s s i b l e e r r o r s . I n a l l e x a m p l e s , t h i s c o d e i s
represented by Rcode. This code generally is a PRIMOS standard return
code and may be interpreted by calling ERRPR$ or IOA$ER to display the
message associated with a given code. Possible values of Rcode are
listed with each routine. The actual numerical value of the codes are
found in the insert file ERRD.INS.language. Exceptions to the use of
standard return codes are as noted in individual routines.

R$CVT:

Obtains a node number from an ASCII node name.

R$CVT(Nodename, Node_Namlen, Rcode) /* Function returns 1*2 */

Nodename (char(*), input) The name of the node (e.g., 'ENB').

Node Namlen (bin,output) Length of the nodename in bytes.
The octal value 100000 (the largest negative number)
is returned if this node is unknown.

R$WHER:

Finds the node on which an object that you wish to access using NPX is
phys ica l l y loca ted .

R$WHER(Key, Obj_Name, Obj_Num, Rcode) /* Function returns 1*2 */

Key tells R$WHER what kind of object is being located.

Current KEYS are:

K$NAME returns node number of the pathname specified
in Obj_Name

K$UNIT return the node number of the file unit specified in
Obj_Num

Obj_Name (char(128) var,input) ASCII name of an objectto be located (e.g. file name)

Obj Num (bin,input) Numeric object data (e.g. file unit)

P R I M E R D & E R E S T R I C T E D P a g e

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

R$ALOC:

This routine allocates a slave on the node represented by the node
number returned from R$CVT.

Since multiple subsystems within a single process may use the same
slave, a global per slave allocation count is maintained by all
subsystems sharing a slave. To allocate a slave for a specific node,
R$ALOC merely increments the per node counter, and no guarantee is made
as to whether or not a slave is actually available on a target node.
Calls to R$ALOC and R$RLS must be paired in a manner analogous to quit
inhibit calls in order to maintain the counter correctly. At least one
R$ALOC call must be made for a node before any R$CALL or R$BGIN - R$END
can be made.

R$ALOC(Nodenum, Rcode)
Nodenum (bin,input) Node number returned from R$CVT.

R$RLS:
This call releases the slave specified by the given Nodenum. The slave
returns to the pool of available slaves.

R$RLS(Nodenum, Rcode)
Nodenum (bin,input) Node number returned from R$CVT.

P R I M E R D & E R E S T R I C T E D P a g e 1 0

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

R$CALL:

The is the actual Remote Procedure Call mechanism. The node
number, obtained from R$CVT, is passed along with the ASCII name
and arguments of the desired routine. Each passed argument,
whether input, output, or I/O, has associated with it a length
and one or more keys that describe the data and its direction.

R$CALL(Rkey, Nodenumber, Procname, Procnamlen, Rcode,
Arg1, Argl len, Argl type,
Arg2, Arg21en, Arg2type,
. . . »
Argn, Argnlen, Argntype)

Rkey (1*2) key to R$CALL

Keys To R$CALL

K$WFRC+n The slave will wait n times 15 seconds for a reconnect
dialog if the Virtual Circuit is cleared by network
failure during a remote request. n can be 0 to 127.
This key gets reset on every request.

K$FUNC This is a function call, please return the L register
value set by the target routine to the caller of NPX.
Function values not returned in the A or L register are
not returnable though NPX.

K$RTRY Retry slave acquisit ion if none are init ial ly
available. Quit will cause an exit and the message
"no remote slaves available". This is ignored after
the first request .

Nodenumber(bin,input) Node number on which to activate a
slave. (See R$CVT to obtain node number from node name.)

Procname (char(*),input) ASCII name of the subroutine
being called. Under current search rules this must be
dynamically linkable or in a shared library.

Procnamlen(bin,input) Chars in target subroutine name.

Rcode (bin,output) Return code for the "remoteness" of
this call, not the code from the target subroutine

Argn (any type,input) Nth argument to the target subroutine

Argnlen (bin,input) Length of the Nth argument in its basic
units (ie., bytes, words, double words or quadwords)

Argntype (bin,input) Bits which describe the data type
and direction of the nth argument. All keys are additive.

P R I M E R D & E R E S T R I C T E D P a g e 1 1

NPX User's Guide PE-TI-1166

K$FB15,K$I2
K$FB31,K$I4
K$FL
K$DFL
K$CHAR
K$VCHR

K$IN

K$OUT

K$REF + m

KPTR,KLOC

Type
Argument
Argument
Argument
Argument
Argument
Argument
Di rect ion

is fixed bin(15)
is fixed bin(31)
is float bin (2 halfwords)
is double floating bin (4 halfwords)
is a fixed-length char(*) aligned.
is a PL1 char(*) var aligned.

Input only argument...the target subroutine
uses this argument as an input parameter.

Return or output argument. The subroutine sets the
value of this argument for use by the caller. K$IN
and K$OUT can be summed to specify that an argument
is both passed to and returned from the target
subrout ine.
Refer
is mad
will b
data t
should
to dat
a l loca
to arg
in byt
then t
words.

to a
e to
e an
ype
be

a st
t i on
umen
es ,
he r

K$

rgume
obta
1*2

of th
the m
ructu

temp
t is
if th
ef er
REF r

nt number m after the t
in the length to return
number representing n u
e referred to argument,
aximum possible length
re (this is used for th
orary storage), e.g., i
K$CHAR, then the refer
e referred to argument
length would be underst
equires that K$OUT be u

arget call
The length

nits of the
ARGnLEN

of the pointed
e slave's
f the referred
value will be
was K$FB15,
ood to be
sed .

I nd i rec t i on

Argument is a pointer or LOC() variable.
In this case, argument length is the length of the
structure pointed to in 16 bit words. If the
argument is also REF, the arguments return length
will be in its own data type. Only K$I2 works now.

PRIME RD&E RESTRICTED Page 12

NPX User's Guide PE-TI-1166

Possible return codes in RCODE

0 O p e r a t i o n c o m p l e t e .

E$RLDN Slave's system or link has gone down since the users'
last remote request. This request has not been started.
If K$WFRC is used, the user will wait n minutes in
the abortable reconnect state before returning this code

E$FONC Slaves system or link was lost in mid request.
The link could not be reestablished in the allowed time.
The target call may or may not have been executed.

E$UNOP Slave was lost due to a cold start or force logout
or slave timeout after virtual circuit clearing) since
last request. The VC was reestablished but the slave
no longer existed.

E$FABT Slave error.

E$NRIT Remote subroutine linkage not permitted.

E$NSLA No slaves available in the time allowed to get one.

E$IREM No NPX calls allowed to that system from this system.

E$NETE An uncorrected Low level network error has been detected
by R$CALL.

E$PNTF Target procedure not found.

PRIME RD&E RESTRICTED Page 13

NPX User's Guide PE-TI-1166

For example, a PRWF$$ call to read 1436 words on file
unit 35 on node BLAH looks like this:

Rnode = R$CVT ('BLAH', 3, Code)
CALL R$ALOC (Rnode, Code)

/* Get the node number */
/* Allocate a slave */

CALL R$CALL (0,Rnode,'PRWF$$',6,Rcode,
K$READ,1,K$FB15+K$IN,
35,1,K$FB15+K$IN,
LOC(Buf),1436,K$PTR+K$FB15+K$REF+6,
0,1,K$FB15+K$IN,
0010240,1,K$FB31+K$IN,
Numred,1,K$FB15+K$0UT,
Code,1,K$FB15+K$0UT)

CALL R$RLS (Rnode, Code) /* Release the slave */

Note:

Notice that the third argument triplet uses the K$REF key so that only
the number of storage units (FB15) actually read will be returned in
BUF.

PRIME RD&E RESTRICTED Page 14

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

4.2 The New Synchronous NPX Interface

When a user uses NPX to go to a remote system, a virtual circuit is
established between the local node and the remote node, and a slave is
acquired in the remote system which will serve the master until it is
released. If the master process has more than one subsystem (or
program) using NPX to the same remote node, this one slave serves all
subsystems in the master process. In the case where the virtual
circuit is cleared unexpectedly, this slave goes away. If one of the
subsystems reestablishes the virtual circuit to the same remote node, a
new slave is acquired. Other subsystems in the master process must be
notified of this fact when they make subsequent NPX calls.

The implementation of a unique number to a slave (SLAVID) will
serve this purpose. It works as follows:

After the initial NPX call (R$ALOC routine), SLAVID is returned to
the caller. The caller stores this value and submits it in subsequent
NPX calls. NPX checks the validity of this number. If the submitted
SLAVID does not match the current slave's ID number, an 'INVALID SLAVE
ID' error code is returned.

A s t h e r e s u l t o f t h e i m p l e m e n t a t i o n o f t h e n e w n e t w o r k
configurator, the node number has been el iminated from the user
interface as of revision 19-3. The SLAVID replaces the node number in
most of the NPX modules except R$ALOC. In the R$ALOC routine,
Node Name replaces the node number, and an extra argument Slavid is
returned to the caller for use in subsequent calls.

Also, some routines have been removed or replaced in the new
interface. R$CVT, which obtained a node number from a given node name,
has been rendered obsolete by the slave ID, no longer exists. Also,
R$WHER has been removed from the NPX interface, and has been replaced
by the OS routine ISREM$. Please refer to the OS/File System group for
further information on this routine.

NOTE:

For all NPX routines but one, R$ALOC, the SLAVID is submitted by
the user. User must not alter the value of SLAVID after obtaining it
from R$ALOC.

P R I M E R D & E R E S T R I C T E D P a g e 1 5

NPX User's Guide PE-TI-1166

R$ALOC:
Allocate a slave on the node specified by the ASCII Node_Name and

return a Slavid for use in subsequent NPX calls.

R$ALOC(Node Name, Slavid, Rcode)
where:

Node Name
SlavTd

Rcode

(char(32) var,input) ASCII name for the target node
(char(8),output) A unique number assigned to the
slave. It is a return argument. Caller must store
this value, and submit it unaltered in subsequent
R$CALL, R$BGIN, R$END and R$AL01 calls,
(bin,output) Returned error code.

The possible values of Rcode are:
0:
E$MSLV
E$NETE
E$RLDN
E$NSLA
E$BPAR
E$RSNU

Operation complete without an error.
Exceeds the maximum number of slaves allowed per user
Network problem.
Remote line is down.
No NPX slave available in the target node.
User's arguments are bad.
Remote system is not up (but on its way up) .

NOTE:

The virtual circuit between the local node and the target
established in R$AL0C when it is called for the first time.

node is

R$AL01:
This routine is a subroutine similar to R$AL0C. R$AL0C must have

previously been called and the Slavid retained. That Slavid is passed
here and a slave with that Slavid is created. An invalid Slavid can be
detected here, but not in R$AL0C (see note below).

R$AL01(Slavid, Rcode)
where:

Slavid

Rcode

(char(8) , input) an unique number assigned to the
slave. The caller must submit this input value,
(bin,output) Returned error code.

The possible values of Rcode are:
0: Operation complete without an error
E$WSLV: SLAVID is invalid.
E$RLDN: Remote line is down.
E$VCGC: The virtual circuit got cleared.

PRIME RD&E RESTRICTED Page 16

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

Note: The Distinction Between R$ALOC and R$AL01

Any process calling NPX modules must call R$ALOC before calling
R$CALL, R$BGIN, R$END or R$RLS. In the first R$ALOC call, a virtual
circuit to the desired node will be established and a unique slave ID
number will be returned. For subsequent allocations, R$AL01 should be
used. R$AL01 expects the same slave ID that was returned from the
original R$ALOC call and using R$AL01 when re-allocating a slave
eliminates a great deal of overhead and can detect if the wrong slave
ID was used. Pre-rev-19.3 programs that do not have R$AL01 available
can re-use R$ALOC, at the cost of some efficiency.

The general recommendation concerning R$ALOC and R$AL01 is as
follows: Use R$ALOC when first calling any NPX routines. This returns
a Slave ID that is unique system-wide and allocates a slave for that
user. Any subsequent calls that would logically require another R$ALOC
call should use R$AL01 for the reasons outlined above. This assumes
the user has saved the Slave ID, irrespective of the users' knowledge
of the node name. However, there may be occasions when the Slave ID is
not known, but the node name is. In this case, the user has no choice
but to call R$ALOC.

Please note that R$ALOC and R$AL01 calls may be nested, provided
that an R$ALOC is called first. It is also permitted to call them in
sequential blocks, again provided an R$ALOC is called first. Again,
each call of either R$ALOC or R$AL01 must have a corresponding R$END.
Both of the following examples are allowed:

R $ A L O C R $ A L O C
R $ A L 0 1 R $ C A L L s

R $ C A L L s R $ E N D
R $ E N D R $ A L 0 1

R $ E N D R $ C A L L s
R$END

P R I M E R D & E R E S T R I C T E D P a g e 1 7

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

R$CALL:

The is the actual Remote Procedure Call mechanism. The Slavid,
obtained from R$ALOC, is passed along with the ASCII name and arguments
of the desired routine. Each passed argument, whether input, output,
or I/O, has associated with it a length and one or more keys that
describe the data type and its direction.

R$CALL(Rkey, Slavid, Proc_Name, Proc_Namlen, Rcode,
arg l , a rg l len , a rg l type,
arg2, arg21en, arg2type,
. . . ,
argn, argnlen, argntype)

where:
R k e y (b i n , i n p u t) S e e n e x t p a g e f o r N P X k e y s .

Keys To R$CALL

K$WFRC+n The slave will wait n times 15 seconds for a reconnect
dialog if the Virtual Circuit is cleared by network
failure during a remote request. n can be 0 to 127.
This key gets reset on every request.

K$FUNC This is a function call, please return the L register
value set by the target routine to the caller of NPX.
Function values not returned in the A or L register
are not returnable though NPX.

K$RTRY Retry slave acquisi t ion i f none are ini t ial ly
available. Quit will cause an exit and the message
!! no remote slaves available". This is ignored after
the first request.

S l a v i d (c h a r (8) , i n p u t) S l a v e ' s u n i q u e i d .
P roc_Name (cha r (*) , i npu t) ASCI I name o f t he t a rge t" " s u b r o u t i n e . U n d e r c u r r e n t s e a r c h r u l e s t h i s

must be dynamically linkable; either a gate or
in a shared library.

Proc Namlen (bin, input) Chars in target subrout ine name.
R c o d e (b i n , o u t p u t) R e t u r n e d e r r o r c o d e f r o m t h e

R$CALL, not from target subroutine.

The possible values of Rcode are:
0 : Ope ra t i on comp le te w i t hou t an e r ro r.
E$WSLV: SLAVID is invalid.
E$BPAR: User's arguments are bad.
E$BCFG: Network configuration mismatched.
E$VCGC: The virtual circuit got cleared.

A R G n (a n y t y p e , i n p u t) n t h s u b r o u t i n e a r g u m e n t .
ARGnLEN (bin,input) The length of the Nth argument in

its basic unit (bytes, words, chars, etc.).
ARGnTYPE (bin,input) Bits which describe the data type

and direction of this argument.
All keys are additive.

P R I M E R D & E R E S T R I C T E D P a g e 1 3

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

Argument Keys

Type

K$FB15,K$I2 Argument is fixed bin(15)
K$FB31,K$I4 Argument is fixed bin(3D
K $ F L A r g u m e n t i s fl o a t b i n (2 h a l f w o r d s)
K$DFL Argument is double float ing b in (4 ha l fwords)
K$CHAR Argument is a fixed- length char(*) a l igned.
K$VCHR Argument is a PL1 char(*) var aligned.

D i r e c t i o n

K $ I N I n p u t o n l y a r g u m e n t . . . t h e t a r g e t s u b r o u t i n e
uses this argument as an input parameter.

K$OUT Return or output argument. The subroutine sets the
value of this argument for use by the caller. K$IN
and K$OUT can be summed to specify that an argument
is both passed to and returned from the target
sub rou t i ne .

K$REF + m Refer to argument number m after the target call
is made to obtain the length to return. The length
will be an 1*2 number representing n units of the
data type of the referred to argument. ARGnLEN
should be the maximum possible length of the pointed
to data structure (this is used for the slave's
allocation temporary storage), e.g., if the referred
to argument is K$CHAR, then the refer value will be
in bytes, if the referred to argument was K$FB15,
then the refer length would be understood to be
words. K$REF requires that K$OUT be used.

I n d i r e c t i o n

KPTR,KLOC Argument is a pointer or LOCO variable.
In this case, argument length is the length of the
structure pointed to in 16 bit words. If the
argument is also REF, the arguments return length
will be in its own data type. Only K$I2 works now.

P R I M E R D & E R E S T R I C T E D P a g e 1 9

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

R$RLS:
This call releases the slave specified by the given Slavid. All

R$RLS calls should have a corresponding R$ALOC call. The slave
returns to the pool of available slaves.

R$RLS(Slavid, Rcode)
where:

Slavid (char(8),input) the unique number assigned to
the slave. Caller must submit this value.

Rcode (bin,output) Returned error code.

The possible values of Rcode are: ~0: Operation complete
without an error. ~E$WSLV: The slavid is invalid. ~E$BVCC:
Problem in clearing the virtual circuit. ~E$VCGC: The virtual
circuit got cleared.

R$CKNT:
This call checks the validity of a Node_Name and for its

existence in the network. This routine is valid only in the new NPX
in te r face .

R$CKNT(Node_Name, Rcode)
where:

Node_Name (char(32) var,input) A network node name.Rcode (bin,output) the returned error code.

The possible values of Rcode are: ~0: Node_Name is valid and
exists in the network. ~E$UNOD: The Node_Name does not exist in
the network.

P R I M E R D & E R E S T R I C T E D P a g e 2 0

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

4.3 The Asynchronous NPX Interface

Asynchronous remote procedure call has two operations, R$BGIN
and R$END, to complete a remote procedure call. This section
describes the use of these two routines. They were implemented^ in
Revision 19.1 with the use of node number. In this documentation,
they are replaced for Revision 19.3 in which SLAVID replaces node
number.

Asynchronous NPX allows a remote procedure call to be broken
into 2 separate operations. They are a begin remote procedure call
(R$BGIN) and an end remote procedure call (R$END). In effect, the
first call sends the arguments to the slave, starts it running, then
returns. R$END is called to check the status of the outstanding
call and optionally pick up the return arguments from the slave if
complete. This has the effect of being 'asynchronous' in that a
procedure call will not 'finish' unless queried by the user.

R$BGIN/R$END pa i rs func t iona l l y rep lace R$CALLs in NPX
operation. When R$END is called, as shown below, an argument is
passed that tells NPX how long to wait before testing for return.
If this is made infinity by passing V$INFN, then the pair behaves
exactly like a single R$CALL.

Currently each user is allowed one outstanding remote procedure
call per node. An attempt to queue R$BGIN calls for the same node
will result in a return code of E$APND (Already Pending). Also,
note that there is currently no method for prematurely terminating
an operation begun with an R$BGIN by the user. This functionality
cannot be per formed, as once a rout ine cal l is made, i t is
impossible to abort it.

P R I M E R D & E R E S T R I C T E D P a g e 2 1

NPX User's Guide PE-TI-1166

R$BGIN:
This routine, when coupled with a corresponding subsequent R$END

call, will asynchronously perform a remote procedure call. Please
see the description of asynchronous NPX calls for more details.

R$BGIN(Rkey, Slavid, Proc_Name, Proc_Namlen,
Buf, Buflen, Rcode,
argl, argllen, argltype,
arg2, arg21en, arg2type,

argn, argnlen, argntype)
where:

Rkey
Slavid
Proc Name

Proc_NamlenBuf

Buflen
Rcode

(b in ,
(char
Calle
(char
subro
must
or in
(b in ,
(b in(
suppl
(b in ,
(b in ,
R$BGI

input)
(8) , i n
r must
(*) , i n
u t ine .
be dyn

a sha
input)
Buflen
ied by
input)
output
N , not

Key to
put) slasubmit
put) ASC
Under c

amical ly
red libr
Chars i

) ,input)
the cal
Length

) Return
from ta

NPX.
ve' s u
this v
II nam
urrent
l i n k a

ary.n the
A scr

ler (s
of Buf
ed err
rget s

nique id number.
alue.
e of the target

search rules this
ble; either a gate
subroutine name,
atch buffer for NPX
ee NOTE below).
in words. See NOTE

or code from
ubrout ine.

The possible values of Rcode are:

0: The request has been transmitted out of the caller's
user space and no errors are in the NPX specific
arguments, but no assurances about the arguments to
the target routine(proc_name) are made.

E$APND: Asynchronous procedure still pending.
E$BCFG: Network configuration mismatched.
E$BFTS: Buffer too small.
E$BPAR: User's arguments are bad.
E$NBUF: No buffer space.
E$NENB: Remote node not enabled.
E$VCGC: The virtual circuit got cleared.
E$WSLV: SLAVID is invalid.

ARGn (any type,input) nth argument to the subroutine.
ARGnLEN (bin,input) The length of the Nth argument in its

basic unit (bytes, words, chars, etc.).
ARGnTYPE (bin,input) Bits which describe the data type and

direction of the nth argument.
All keys are additive.

PRIME RD&E RESTRICTED Page 22

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

R$END:

This routine checks the status of a single outstanding remote
p rocedu re ca l l . I f a ca l l i s comp le te , t he r e tu rn a rgumen ts
specified in the R$BGIN call are filled in and returned.

R$END(Rkey, Slavid, Buf, Time, Rcode)

where:
Rkey (bin, input) Any R$CALL key.
Slavid (Char(8),input) The unique ID of the slave.
Bu f (b i n (Buflen) , i npu t) A sc ra t ch bu f fe r f o r NPX

supplied by the caller (see R$BGIN for Buf).
Time (bin,input) Time to wait in tenths of seconds.

Two special values are: V$INFN and V$NONE,
infinite and no time respectively.
If an operation completes before the timer
runs out, R$END returns with code = 0.
If the timer expires without the call completing
then E$SPND (Still Pending) is returned.

Rcode (b in,output) Returned code.

The possible values of Rcode are:
0 : Ca l l comple te fo r the ta rget node. Resu l ts ,

if any, have been placed in the R$BGIN
K$0UT arguments.

E$SPND: Still pending. The remote node is still
working on the target call or data is in
transit in the network.

E$VCGC: The virtual circuit got cleared.
E$WSLV: SLAVID is invalid.

P R I M E R D & E R E S T R I C T E D P a g e 2 3

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

NOTE:

The BUF argument in R$BGIN is a scratch buffer for NPX which
must be supplied by the caller. This buffer must exist for the
duration of the remote procedure call. Since BUF is allocated from
the caller's storage, the caller must not return or release that
storage before the matching R$END is called.

The BUFLEN argument is the length of buffer BUF. Its size in
words is given by the formula:

BUFSIZE = 100 + MAX (length of concatenated_input_args,
length of concatenated_output_args + 100).

For example, if the concatenated length of the input arguments
of a procedure call were 600 words, and the length of the output
arguments were 400 words, then a buffer that contains at least 700
words must be used. NPX checks the size of the user supplied buffer
against the the size of the buffer that it calculates is necessary.
An error of E$BFTS is returned in Rcode if the buffer is too small.

There is an upper limit to the size of BUF. It must not exceed
4K words. If the input or the output argument exceeds it, an error
code E$NBUF (no buffer space) will be returned. If the tally of all
input arguments or the tally of all output arguments (whichever is
larger) exceeds this limit, it will result in the same error code.

P R I M E R D & E R E S T R I C T E D P a g e 2 4

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

5 Conversion Between Old and New Interfaces

My thanks go to J. Craig Burley of technical publications for
expounding this technique in a December 1983 memo.

This is a discipline for changing a product using NPX so that it
will support both old and new NPX versions of PRIMOS. For most of
your program, the only change is that the node number argument of
NPX calls is a slave id when using new NPX. Whereas the old node
number argument is INTEGER*2 or FIXED BIN(15), the new slave id is
INTEGER*2 (2) or CHAR(8), i.e. 4 halfwords (one halfword=l6 bits).

The most difficult part of the change is where you actually
allocate the slave. Here, instead of converting a node name (like
ENB) to a node number (like 513) using R$CVT and then calling R$ALOC
with the node number, you just call R$ALOC with the node name (ENB)
and it returns a slave id. You use this slave id in subsequent
calls to NPX, up until the point where you call R$RLS with the slave
id. (If you want to do subsequent allocations of the slave after
the initial R$ALOC call and before the final R$RLS calls, you match
up pairs of R$AL01/R$RLS calls, where R$AL01 is a new subroutine
that allocates the slave again using the same slave id, and hence
does not take a node name).

One problem is that whereas R$CVT took the node name in a
CHAR(6) scalar, new R$ALOC uses a CHAR(6) VAR. This is something of
a minor headache in FTN programs.

Because R$CVT isn't used in new NPX, the subroutine does not
exist. This fact is used, as shown below, to determine whether a
program is running under new or old NPX — by calling CKDYN$ (check
whether dynamic link is snapable) with the name R$CVT to see if
R$CVT existed or not.

In the following discipline, the node number is called NODNUM,
and certain assumptions are made. The most crucial assumption is
that the RCVT/RALOC calls in your existing code must be close
together. If instead your program calls R$CVT, stores the node
number in some area, and later on your program actually uses R$ALOC,
then you have to change the node number storage area to store a node
name OR node number instead. But the stuff below wi l l s t i l l
probably help you get an idea of how to do it even if your program
works this way.

This example is in FTN, but the translation to PLP is very
straightforward, except PLP programmers will have to use a based
overlay to do the EQUIVALENCE functionality (used to map the old
node number and new slave id into the same place in memory so
non-R$ALOC/R$CVT calls don't need to change).

1. Change the declaration for the node number (NODNUM) from
INTEGER*2 to INTEGER*4 N0DNUM(2). Do this any place the node number
is used.

P R I M E R D & E R E S T R I C T E D P a g e 2 5

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

2. In the slave allocation sequence, change the following sequence
of pseudo code:

INTEGER*2 NODNUM
INTEGER*2 R$CVT

NODNUM=R$CVT(nodename,nodelen)
IF (NODNUM.EQ.:100000) GO TO error
CALL R$ALOC(NODNUM,CODE) /* CODE is optional before 19.

3.
IF (CODE.NE.0) GO TO error

to this new sequence of pseudo code:

INTEGER*4 N0DNUM(2) /* Node number or slave id.
INTEGER*2 CVTNUM /* For node number from R$CVT.
INTEGER*2 R$CVT /* (R$CVT is still an 1*2 function)
INTEGER*2 CVTNAM(4) /* Name of R$CVT subroutine.
INTEGER*2 NEWNPX /* -1=???; 0=old NPX; 1=new NPX
EQUIVALENCE (CVTNUM,NODNUM) /* "nodnum"="slavid"

C
DATA NEWNPX/-1/ /* Don't know which yet.
DATA CVTNAM/5,'R$CVT'/

•
IF (NEWNPX.NE.-1) GO TO haveit /* Know which NPX?
CALL CKDYN$(CVTNAM,CODE) /* See if R$CVT exists.
IF (CODE.EQ.0) NEWNPX=0 /* If yes, old NPX.
IF (CODE.NE.0) NEWNPX=1 /* Else, new NPX.

C
haveit: IF (NEWNPX.EQ.1) GO TO newnpx /* New npx?
C

CVTNUM=R$CVT(nodename,nodelen) /* Get node number.
IF (CVTNUM.EQ.:100000) GO TO error
CODE=0 /* Some old revs don't zero CODE in R$ALOC.
CALL R$ALOC(CVTNUM,CODE) /* Old NPX alloc-slave.
IF (CODE.NE.0) GO TO error
G O TO h a v s l v / * N o w h a v e t h e s l a v e !

n e w n p x : C O D E = 0 / * J u s t t o b e s a f e .
CALL R$AL0C(nodename,NODNUM,CODE)
IF (CODE.NE.0) GO TO error

C
h a v s l v : C O N T I N U E / * A l l o c a t i o n d o n e .

P R I M E R D & E R E S T R I C T E D P a g e 2 6

N P X U s e r ' s G u i d e P E - T I - 1 1 6 6

Note: Whereas <nodenam>,<nodelen> are the character string/length
in the old FTN style (as used in SRCH$$, TSRC$$, and so on),
<nodenamlen> is a varying character string, PL/1 style (as used in
SRSFX$ for example), where the first 16-bit halfword is the length
of the string, and the string itself starts in the second 16-bit
halfword of <nodenamlen>.

3. If you might run on a pre-Rev. 19.2 system, you will need to
load the CKDYN$ subroutine in with your product, as it only came
into existence at Rev. 19-2. Get it from the master disk 19.2, V1
partition, in PRIM0S>R3S>CKDYN$.PLP. Then change the $INSERT line
i n C K D Y N $ t o u s e S Y S C O M > E R R D . I N S . P L 1 r a t h e r t h a n
*>INSERT>ERRD.INS.PLP.

P R I M E R D & E R E S T R I C T E D P a g e 2 7

	Cover Page
	1
	Table of Contents
	2
	Introduction to NPX
	3
	4
	Performance of NPX vs. FAM I
	5
	Using NPX
	6
	7
	8
	The Calling Interfaces
	i-- The Old Synchronous NPX Interface
	9
	10
	11
	12
	13
	14
	-- The New Synchronous NPX Interface
	15
	16
	17
	18
	19
	20
	The Asynchronous NPX Interface
	21
	22
	23
	24
	Conversion Between Old and New Interfaces
	25
	26
	27

